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The impedance introduced by an abrupt change of circular cross section of a tube has been examined. 
It is shown that in the case of an ideal viscousless fluid the effect of the discontinuity is to introduce an 
inductance in series with the acoustical transmission system. The discontinuity inductance has been deter- 
mined as a function of the ratio of the tube radii and has been plotted for different values of this ratio. The 
problem of a small tube or constriction inserted between two larger tubes has also been treated. It is shown 
that the constriction inductance is equal to the sum of the discontinuity inductances of each end taken 
separately to a very good approximation. The constriction inductance can be considered as a correction 
term to be added to the analogous acoustical inductance of the tube and can be interpreted physically as an 
increase in the equivalent length of the tube. 

I. INTRODUCTION 

HEN two tubes of different circular cross section 
are joined together to form an acoustical trans- 

mission system, an additional impedance is introduced 
owing to the abrupt change of circular cross section at 
the tube junction. This impedance, which i• shown to be 
an inductance, will be called the discontinuity induct- 
ance and has been determined as a function of the 
ratio of the tube radii. The analysis is based upon the 
assumption that the wavelength is long in comparison 
with the tube radii. If the ratio of tube radii is unity, 
there is no change in circular cross section and the dis- 
continuity inductance is zero. If the ratio of tube radii 
is zero, corresponding to an open tube fitted with an 
infinite flange, the discontinuity inductance is (p/A) 
(8r/3r). 

The work has been extended to include the case of a 
small tube or constriction inserted between two larger 
tubes. It is shown that the constriction inductance, 
which is defined to be the inductance introduced by the 
change in tube cross section at both ends of the con- 
striction, is equal to the sum of the discontinuity in- 
ductances of each end taken separately to a very good 
approximation. It should be noted that the constriction 
inductance can be considered as a correction term to be 
added to the analogous acoustical inductance of the 
tube and can be interpreted physically as an increase in 
the equivalent length of the tube. 

The theoretical approach to the problem consists of 
setting up solutions satisfying both the wave equation 
and boundary conditions for each region separately. 
The solutions for each region are then required to satisfy 
the same boundary conditions across the common bound- 
ary. It is possible to interpret the results in such a way 
that the discontinuity can be represented by a lumped 
series inductance located at the junction. 

The matching technique used in this paper was first 
applied to electromagnetic cavity resonator problems 
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by Hahn. • Whinnery and Jamieson s have used the same 
method to study the effect of discontinuities in electrical 
transmission systems and have shown that the dis- 
continuity can be represented by a simple. equivalent 
circuit with lumped circuit elements. 

Miles a has considered the reflection of sound due to a 

change in cross section of a circular tube and has deter- 
mined expressions for the reflection and transmission 
coefficients. No numerical calculations are given. In 
another paper 4 Miles studied the effect of a plane dis- 
continuity on a plane wave propagated in a cylindrical 
tube of arbitrary cross section by using a variational 
technique. He also developed a transmission line anal- 
ogy. In Miles' treatment of the transmission line 
analogy, however, his choice of voltage and current is 
inverted from the elementary electrical analogy found 
in the standard literature. 5 He sets the particle velocity 
proportional to the voltage and the pressure propor- 
tional to the current in order to simplify certain 
boundary conditions. With this transmission line anal- 
ogy the effect of a plane discontinuity on a plane wave is 
represented by a capacitance at the discontinuity. No 
numerical results are given. 

II. THE EQUIVALENT CIRCUIT 

Consider an acoustical transmission system of the 
kind shown in Fig. 1. It is desired to represent it by an 
equivalent transmission line and a lumped impedance 
at the discontinuity. It should be noted that an equiva- 
lent circuit can be drawn only for a particular mode of 
the transmission system and not for the transmission 
system itself. Therefore, we restrict ourselves to the 
case in which the only propagating mode is the zeroth 
order mode. This restriction means that the transverse 

dimensions of the acoustical transmission system must 

I W. C. Hahn, J. Appl. Phys. 12, 62 (1941). 
• J. R. Whinnery and H. W. Jamieson, Proc. Inst. Radio Engrs. 

32; 98 (1944). 
a j. A. Miles, J. Acoust. Soc. Am. 16, 14 (1944). 
4 j. A. Miles, J. Acoust. Soc. Am. 17, 259 (1946). 
5 p.M. Morse, Vibration and Sound (McGraw-Hill Book Com- 

pany, Inc., New York, 1948), second edition, pp. 233-237. 
327 

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  50.81.134.248 On: Fri, 23 May 2014

23:42:37



328 F.C. KARAL 

Region 8 Region G 

Fro. 1. Cylindrical plane discontinuity. 

be small compared to the wavelength, so that all higher 
order modes set up at the discontinuity will be attenu- 
ated rapidly with distance. 

The physical behavior in regions B and C and at the 
discontinuity will now be discussed. In region B, for 
z<- e, only the zeroth order mode exists. There is a 
wave traveling to the right and another traveling to the 
left (the reflected wave). In region C, for z>-½ •, only 
the zeroth order mode exists. This wave is propagated to 
the right. It is assumed there is no termination; conse- 
quently, there is no reflected wave. At the discontinuity, 
z=0, higher order modes exist. These, however, are 
attenuated extremely rapidly unless the transverse 
dimensions of the acoustic transmission system are 
appreciable compared to the wavelength. Therefore, in 
the neighborhood of the discontinuity, higher order 
modes as well as the zeroth order mode must be con- 

sidered. On mathematical grounds it is necessary to 
consider the higher order modes in the neighborhood of 
the discontinuity in order to satisfy the boundary 
conditions. 

Near the discontinuity 

P=Po+Pm 
V= Vo+ V n, 

where P and V are the total pressure and total volume 
flow, P0 and V0 are the pressure and volume flow due to 
the zeroth order mode, and P n and V n are the pressure 
and volume flow due to the higher order modes. If the 
volume flow is defined as the integral of the normal 
component of the velocity across the tube cross section 

v=fv.nas, 
it can be shown from the distribution of all higher order 
modes that their contribution to the volume flow 

integral is zero. Therefore, 

or 

VH=O 

We conclude that total volume flow is exactly the 

zeroth order mode. Since total volume flow must be 

continuous across the discontinuity, the volume flow 
in the zeroth order mode must also be continuous. 
Therefore, at the discontinuity separating regions B 
and C 

(Vo) ,:0= (Vo0 ,=0. (2) 

The contribution to the pressure from the higher order 
modes Pn is not zero. Continuity of total pressure at the 
discontinuity can be written as 

(Poc) ,=0- (Poa) •=0 = (Pna)•=0- (Pnc) ,:0. (3) 

Evidently the transmission line pressure is discon- 
tinuous by an amount given by the difference in the 
pressures because of the higher order modes in the two 
regions. The continuity of volume flow and discon- 
tinuity of pressure at z=0 may be compensated for in 
the transmission line equivalent circuit by inserting an 
impedance in series with the line at the discontinuity. 
This lumped impedance has the value 

z= - . (4) 
(Vo) (Vo) 

The equivalent circuit is shown in Fig. 2. 

III. THEORY 

Consider an acoustical transmission system in which a 
tube of radius b is joined to a tube of radius c, where ½ is 
greater than b and the change in cross section is abrupt. 
Let us introduce a cylindrical coordinate system ori- 
ented in such a way that the z axis coincides with the 
axes of the tubes and the origin is taken in the plane of 
the discontinuity. (See Fig. 1.) Suppose that the tube in 
region B is excited by the zeroth order mode and that 
the tube in region C is terminated in its characteristic 
impedance so that there is no reflection. Let B0' be the 
amplitude of the incident zeroth order mode in region 
B, Bo a be the amplitude if the reflected zeroth order 
mode in region B, and Co be the amplitude of the trans- 
mitted zeroth order mode in region C. At the discon- 
tinuity, higher order modes are excited but are attenu- 
ated rapidly if the transverse dimensions of the tubes 
are small compared to the wavelength. Let B, and C • be 
the amplitudes of the attenuated modes in regions B and 
C, respectively. 

The expressions for the pressure in regions B and C 
are given by 

pa = Bo•e+•z+ Bo•.e-• z 

+ 5-'. B,Jo(rao,•r/b) exp (+'},o,,'z) (5) 

and 

pc = Coe+•'+ 5-'. C•Jo(rao•r/c) exp (- q,o,,,z). (6) 
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In Eqs. (5) and (6) 

c'= velocity of sound 

k= co/c'= 2•r/X 

)"0n= (rao,/b)[1- (2b/Xao,)C] • ' 
)'0m = (•rOtom/½)[1-- (2½//XOtom)•] « 

(7) 

The expressions for the total pressure in the two re- 
gions when z=0 are given by 

or 

and the time factor exp(-icot) has been omitted for and 
convenience. Note that z is negative in region B and 
positive in region C. •ra0q are roots of the equation 

Jl(Tro•0 q)=0 (8) 

and result from the fact that the walls are assumed to be 

rigid, that is, the radial component of velocity is zero. 
It can easily be verified that the preceding mode solu- 
tions satisfy the scalar wave equation for the sound 
pressure. 

We shall find it convenient to introduce the following 
specific acoustic admittances' 

1 OpBn )'On' 
YB,= q .... +-;--, n•0 (9) 

1 Opcm )'Ore or 
YCm-- '• .... m•O. (10) 

ico ppc,• Oz ico p 

Let us next write expressions for the normal compo- 
nents of velocity in both regions. We have, making use 
of (9) and (10), 

1 Ope k k 
VzB-- ---- 'nt---Bole +ikz 'Bo•e -ikz 

icop Oz cop cop 

-]- Z YBnBnJo(7rotonr/b) exp 

10pc 

ico p oz 

k 
--- +---Coe+i•z 

cop 

(11) 

2f_ E YcmCmJo(7rotomr/c) exp (-)'o•:). (12) 

and 

?; zC = -- 

The boundary conditions at the discontinuity are the 
following' 

(pe):=o = (Pc):=o, 0<r<b (13) 

1 (opr• 1 (Opc• i-•\-•-•/z_-o-i-•\-•Z/z:o' 0<r<b (14) 

In the above p• and Pc are the total pressures, that is, 
the sum of transmission line and higher order modes. 

(PB) •=:0 = Bol-'• - Bo•'-• E B.Jo(7rrzo.r//b) 
.. 

(p•) •=o = Bo+ Y'• B.Jo(7rrzonr/b) (16) 

(PC) z-o= Co'q - E CmJo(7rOtom•½), (17) 
m=l 

where the amplitudes of the transmission line• modes 
have been added to give a single term. 

The expressions for the normal velocity components 
in the two regions when z=0 are given by 

1 (Ope• k k • = + --B 01 -- --B o: 
i co p \-•-z l z=O cop cop 

+ E rB•B.Jo(Trao.r/b) 

1 ope ¾BoBo+ Y'• ¾B.B.Jo(7rrzo.r/b) 
icop k•/z=O 

and 

-- = +•o+ • YcmCmJo(w•omr/C) 
iwpk•/z=0 wp m•l 

(18) 

or 

1 (Opc = rcoCo-q- Y: rcmCmJo(•rOtomr/C). (19) 
m----1 

Consider boundary conditions (14) and (15). Let us 
first find an expression for the YsoBo term. We have 
from (14) 

fo\Oz)z=ordr=fox-•-Zlz=ordr. (20) 
v v 

zo, Zo½ 

i 

Region B I Region C 
I 

I 

z=O 

Fro. 2. The equivalent circuit. 
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From (15) we obtain the integral 

\ • ! •=o rdr 
which has the value zero. This is added to the left-hand 
side of (20) yielding the following expression' 

\•z ! z=o rdr= \-•z ! z=o rdr' (21) 
Substituting from (18) and (19) we have 

YBoBordr+ Y'. YBnB,• Jo(rao,r/b)rdr 
--=1 

, 

b2Y•oBo = d'YcoCo. 
or 

, (22) 

We perform a similar integration in order to obtain 
the higher order coefficients. We multiply both sides by 
rJoOrao•r/c) instead of r, however, before integrating. 

b ( OPB'• fo \-•-z /•=o Jø(raø•r/c)rdr 
•(apc =fo\-•Z)z=oJO(raovr/c)rdr. (23) 

Substituting from (18) and (19) we have 

f0 *•0e0J0(•o,r/•)•d• 
+ • Y•,•B, Jo(rao,r/b)Jo(raovr/c)rdr 

.----1 

= YcoCoJo(raopr/c)rdr 

+ Y'. YcmCm Jo(raomr/c)Jo(raopr/c)rdr. (24) 

Letting p= m and using several well-known integrals we 
obtain 

bc 

\ 7rOtore ! 

oo(raomb/c) Y•B• 
+ • 'Jo(rao,)Jx(rao,•b/c) 

•--•(•0d0'-- (•odb) • 

½9. 

=YCmCm(•)Jo•(raOm). (25) 

Rearranging the above we have 

YCmCm J'l(xmot) 
••---'20g 

YsoBo XmJ'o2(Xm) 

¾•z• r,•(•)Jo•-(x•) 
+ 2a • • 

"=• Y•oBo X,Jo•'(Xm) 
where 

, (26) 

a=b/c, (27) 

Xm--- rOtOm, (28) 

(XmOg/Xn) Jl(XmOg) 
rmn(Ot) -- •. (29) 

E(•m•/•)•-- i• Jo½O 

We shall now consider boundary condition (13). Let 
us first find an expression for the Bo term. We have 

b b 

fo(Pt•)z=ordr=fo(pC)z=ordr. (30) 

(31) 

Substituting from (16) and (17) we obtain 

•o•+ Z • Jo(•.o•/5)rd• 
, 

= Cordr+ Jo(sraomr/c)rdr 

or 

--So = •o-[- •'• CmJl(WOtomb/c). 
2 2 m=l 71' ' 

When we rearrange and use (27) and (28), the above 
becomes 

oo J'l(XmC 0 
B0= Co+ 2 Z Cm•, (32) 

m=l XmOg 

We shall next obtain the B, coefficient. Multiplying 
both sides of (13) by Jo(raov/b)r and integrating from 
0 to b with respect to r, we obtain 

b 

o (P•)z..oJo(•'aop•'/b)•'d• ' 
b 

= fo (Pc)z=oJo(raovr/b)rdr. (33) 
By substituting from (16) and (17) we have 

b 

o eOJO(•o,•/b)•d• 
-I-- 51B. Jo(rao,•r/b)Jo(raopr/b)rdr 

= f *ColoO',•o•/b)•ar 
+ •,C,,, JoO',•o,•/OJo(•',•o•r/b)•ar. (34) 
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Letting p= n and using several well-known integrals, we 
obtain 

ECm = - 40(0 
(odb) 

By rearranging, and using (27), (28), and (29), the above 
equation becomes 

B•= 2 • C• . (35) 
m=l Xn 

From the results already obtained, it is possible to 
determine an infinite number of inhomogeneous simul- 
taneous equations in terms of the infinite number of 
unknown ratios (Y•B•/Y•oBo). These ratios will be 
needed in order to determine the exact value of the 

discontinuity inductance. Now 

•tO n X n 
Y• •= + • , (36) 

iw p iw pb 

YCm = -- • -- •, (37) 
i •r p iw pc 

provided the wavelength is long in comparison to the 
tube radii. Substituting into (35) we have 

or 

( B• Y•-- =25'.C•. ..... 
Xn ! m=l Xn c) 

YBvB v 2 oo YCmCm Tmv(Ot) 

YBoBo a m=l YBoBo Xm 
(38) 

Equation (26) can now be substituted directly into (38). 
We obtain 

YB •B• oo Tm p(t•) .I•(Xmt•) 
.... 4• 
YBoBo m=l Xem Jo2(Xm) 

--4•z • Ymp(•z) • 'Jo2(Xn). (39) 
m=l XmJo2(Xm) ,=1 Y•oBo x, 

Equation (39) represents an infinite number of inhomo- 
geneous simultaneous equations, one for each value of p, 
in the infinite number of unknown ratios. It is possible 
to evaluate a finite number of the unknown ratios by 
taking the same number of simultaneous equations. 

Before proceeding with a discussion of the discon- 
tinuity inductance, let us first verify Eq. (2) given in the 
introduction. Using the definition of volume flow given 
by (1), the volume flow for region C is 

Substituting from Eq. (19) we have 

(vc),_0= 2.Yc0c0_f rdr 

. c +2•-5'. YCmC,• Jo(•'ao,•r/c)rdr 

or 

(Vc) z=0 = ;rc•'YcoCo. (41) 

We obtain a similar expression for the volume flow in 
region B. Thus, 

(V•) ,=0 = rb:Y•oBo. (42) 

By using Eq. (22) we see that 

' (Vc) •0 = vc•YcoCo = vb•Y•oBo 
or 

(Vs) •=0 = (Vc)•0. (43) 

It should be noted that even if we do not restrict our- 

selves to the plane of the discontinuity, the contribu- 
tion to volume flow from the higher order modes is still 
zero. This proves the statement made in the introduc- 
tion that the total volume flow at any point is that of the 
zeroth order mode. 

IV.. THE DISCONTINUITY INDUCTANCE 

The zeroth order mode pressures in the two regions at 
the discontinuity are 

(po•) ,=o = B0 (44) 
and 

(poc) ,=o= Co. (45) 

Equation (32) indicates, however, that the pressure in 
the zeroth order modes in the two regions is not con- 
tinuous across the change of cross section. Thus, 

(p0j) :=0 = (poe) ,=0+ 2 5'. Cm' . (46) 
m=l XmOl 

This discontinuity of pressure may be represented by a 
lumped impedance at the change of cross section. Since 

p= VZ•, 

where Z• is an analogous acoustical impedance, Eq. (46) 
can be written as 

(poB) z=o-- (poc) z=o= VZ• 
or 

(poo) ,=o-- (poc) ,=o= rb2Y•oBoZ,, 

where we have used (42). Comparing the above result 
with (46) we obtain 

(Vc)•=ø=i•o \'-•z / 2rrdr. (40) •0 

2 • C• Jl(XmO 0 
Z.= • •. (47). 

•rb •' "'=• Y•oBo XraOl 
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FIO. 3. Discontinuity inductance correction factor II(a) 
versus ratio of tube radii a. 

Substituting from (7) and (10) into (47) we have 

or 

ß 'b ,•=• \ ycoCo / 
(48) 

2p • (YcmCm)Jl(Xmot) (49) 
where L(a) is the analogous acoustical inductance. If 
Eq. (26) is substituted into (49), we obtain the desired 
result for the discontinuity inductance: 

/ L(a)=3•r• b tt(a) 

3•r • Jl(XmOt) ( I, rBnBn• rmn(ot)Jo•'(xn) } +--E , (s0) 
2 •=• ••O(Xm) • Y•oBo / x, 

3• • 

2 • (x•a)[X•Jo(x•)3 • 

The unknown constants appearing in (50) can be found 
from (39). For most practical applications, however, the 
analogous inductance given by the approximate ex- 
pression 

z(.) = (S2) 

is sufficiently accurate. Values of H(a) have been 
plotted as a function of a, the ratio of the tube radii, in 
Fig. 3. H(a) will be called the discontinuity inductance 
correction factor. 

The analysis presented • the preceding pages is 
based u•n the assumption that the wavelength is long 
in comparison with the tube radii. Note that ff the ratio 
of tube radii is unity, the disconthuity •ductance is 
zero. This result is physically obvious shce there is no 
change in tube cross section and consequently no addi- 
tional inductance is introduced. If the ratio of tube radii 

is zero, corresponding to an open tube fitted with an 
in•ite flange, the discontinuity inductance is (8p/ 

3•r•'b). This is the same result obtained by Morse. 6 His 
analysis, however, is based on the assumption that the 
layer of air at the open end of the tube vibrates in the 
same way as a circular piston set flush in an infinite 
plane wall. 

The discontinuity considered in the preceding dis- 
cussion is one in which there is an increase in tube cross 

section at the junction. For discontinuities in which 
there is a decrease in tube cross section at the junction, 
it can be shown that the expression for the discontinuity, 
inductance is the same as Eq. (52), provided b is taken 
to be the radius of the smaller tube and a is the ratio of 

the small tube to the larger tube. 
V. THE CONSTRICTION INDUCTANCE 

Consider an acoustical transmission system in which 
a small tube or constriction of radius b is.inserted be- 

tween two larger tubes of radii a and c. Let us introduce 
a cylindrical coordinate system oriented in such a way 
that the z axis coincides with the axes of the tubes and 

the origin is taken in the plane of the discontinuity 
occurring at the junction between regions A and B. See 
Fig. 4. Suppose that the tube in region A is excited by 
the zeroth order mode and that the tube in region C is 
terminated in its characteristic impedance so that there 
is no reflection. Let A 0 • and A 0 •' be the amplitudes of the 
incident and reflected zeroth order modes in region A, 
Bd and B0 • be the amplitudes of the incident and re- 
flected zeroth order modes in region B, and Co be the 
amplitude of the transmitted zeroth order in region C. 
Also, let A •, B n, and Cm be the amplitudes of the higher 
order modes in regions A, B, and C, respectively. The 
solution of the constriction problem follows the same 
general procedure used previously. For this reason only 
the essential steps will be given. 

The expressions for the pressure and normal compo- 
nent of velocity at the junction between regions A and 
B are 

, 

Re91on A 

(53) 

(54) 

Fzo. 4. Constriction discontinuity. 

Region 8 t Region C 

See reference 5, p. 247. 
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and 

(p•) •=o= eo+ Y. edo(,•-o•/b), (ss) 
n=l 

icop\ Oz / z•-O 

=•+ E ¾• • :o(,•,o•qO) (56) 
½tp n=l 

where 

In the above expressions 

and 

k= 2,r/X 

,0•= (-•o,/•)D- 2•/X•o,)•'] • 

•0. '= (,rao./b)[1- (2b/Xao•)•'• t ' 
•0• "= (,raom/c)[1- (2c/Xaom)•'_-] t 

'yon ! 7f o•o n 
YB•= -- • --• n•O 

ioo p ioo pb ' 

•Om t! gr OtOre 
Yc• = --•• --• m•O 

iw p ice pc ' 

(57) 

(58) 

We have also made the following substitutions' 

Ao=AoX+Ao: 

1 

Y•oA o= •c, (A o•-- A o:) 
Bo= Bo•+ Bo •- .. 

B•=B•+B. •' 

Bo*= Bo•-- Bo •. 

(59) 

The expressions for the pressure and normal compo- 
nent of velocity at the junction between regions B and 
C are 

(p•).=,= too+ E mdo(=-o.qb), (60) 

=•-•- • Ye.(B•*JoOrao.r/b), (61) ioo p \ T z= t C t p 
and 

(Pc),=,= ½o+ • e•Jo(rao•r/c), (62) 
m•l 

= Yco½o+ • Yc•½•Jo(rao•r/c), (63) 

(•0 = Coe +ikl 
'(64) 

1 
Yco•o=•oe +i•z 

The boundary conditions at z= 0 are 

(pa),=o = (pe),=o, O<r<b 

0<r<b 

(65) 

(66) 

(67) 

The boundary conditions at z= l are 

(Pc) ==t, O<r<b (68) 

,1 (op•] 1 (ope] ' O<r<b (69) 

1 (Opc• =0, b<r<c. (70) 
i co p \-•-• l •=• 

By using the above boundary conditions and the ex- 
pressions for the pressure and n•rmal velocity given in 
Eqs. (53)-(56) and (60)-(63), we obtain the following 
relations' 

ao' 
a:YAoAo=b •.-- (71) 

pC t• 

YAoA • = 2•'• 
Bo* 

pc' 

+2/5•-• Y•.B• *r'"(•)Jø•'(x") (72) 
.=, x.Jo'.(x•) 

c • Yeo eo = b •'- 
pc t • 

(73) 

(74) 

(75) 
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J•(x.•,•) 
Y c ,,, ½ ,,, = 

x,,,Jo•(x•) 

+ 282 Y'. YB •63 •* , (76) 
,,=, x do'(x•) 

•o J•(x,•,•) 
630 = e0+ 2 Y'. e•-.. , (77) 

m=l Xm OL 

63•= 2 52 e•. , (78) 
m•l Xn 

where 

•=b/a }. a=b/c (79) 
By proceeding in the same way as was done for the 

discontinuity inductance, it can easily be shown that 

(80) 

2o •o [ ,o½' )J•(x,•a) (81) 
where L(/•) is the analogous acoustical inductance at 
the junction separating regions A and B, and L(a) is 
the analogous acoustical inductance at the junction 
separating regions B and C. If Eq. (72) is substituted 
into (80), and Eq. (76) is substituted into (81), we 
obtain the following results: 

8o 3•roo J•(x:,l•) 

t(•) = • •(•)+-- E 2 •,=• 

xE Y•; , (82) 
•=•kBg x• 

3r • J•(x•) 
--• . , (83) 
2 •=, (•e)[•0(•)3: 

3r • J•(x•a) = 8• •(•)+--• L(a) 3•b 2 •=• x•:Jo:(X•) 

X E •Y•• , (84) n:l Xn 

//(•) = 

38' •o Jx•(x,,a) 
--E . (8s) H(øO-' 2 m•.l (XmOOEXmJo(Xm)3 2 

H(a) and H(•) can be found from Fig. 3. 
The inductances given by Eqs. (82) and (84) are to be 

inserted • series with the line at the junction between 
regions A and B and the junction between regions B and 
C, respectively. The constriction inductance, which is 
defined to be the inductance introduced by the change 
in tube cross section at both ends of the constriction, is 
given by ß 

•=L(a)+L(•). (86) 

Note that if the double summation is neglected, the 
constriction inductance can be written as the sum of the 

discontMuity inductances at each end taken separately. 
Thus, 

• = 8d3,:b{•(•)+ •(•) }. (87) 

It is obvious that the double summation is negligible 
provided (l/b) is sufficiently large, sMce all higher order 
modes excited by one discontMuity w•l be attenuated 
before affectMg the behavior at the other discontinuity. 
In the case when (l/b) is small, it is necessa• to perform 
numerical calculations in order to justify Eq. (87). The 
work requked is tedious and lengthy and has not been 
performed. In similar problems MvolvMg parallel plate 
transmission 1Mes, •Mne• and Jamieson: Mvesti- 
gated contributions of this kind and found them small. 

The analogous inductance of a tube of circular cross 
section at low frequencies allowMg for end effects can 
now be given. If p is the density of the medium, A the 
cross-sectional area of the tube, and I the actual length 
of the tube, •en 

L=--+(p/A)(8b/3r){H(a)+H(•)} (88) 
A 

or 

where 

L= ol dA, (89) 

l,=l+(8b/38'){tt(a)+tt(l•)}. (90) 

The constriction inductance can, therefore, be con- 
sidered as a correction term to be added to the analogous 
acoustical inductance of a tube of circular cross section 

and can be interpreted physically as an increase in the 
equivalent length of the tube. 
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